Problems with an answer of 1 have always been my favorite. How many of the following have an answer of 1 ? Show your work!

Tim Tilton
Winton Woods High School
Cincinnati, Ohio 45240
tilton.tim@wintonwoods.org

1. $\frac{2 y+2}{(y+1)^{2}}+\frac{y-1}{y+2}=$
2. $(\sqrt{14}+\sqrt{13})(\sqrt{14}-\sqrt{13})=$
3. Find the distance between these two points: $(-5,3)$ and $(-4,3)$
4. $\log 10=$
5. $\quad\left[\left(72 x^{3} y^{4}\right)(5 x y)\right]$
6. ${ }_{14} C_{14}=$
7. Use the quadratic formula to find the value of the discriminant for $3 x^{2}+7 x+4$.
8. What is the radius of this circle? $4 x^{2}+4 y^{2}-16 x-12 y+21=0$
9. $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|=$
10. $\left[\begin{array}{lll}2 & 3 & -1\end{array}\left[\begin{array}{c}4 \\ -3 \\ -2\end{array}\right]=\right.$
11. What is the slope of the line containing $(2,5)$ and $(-4,-1)$?
12. How many different ways can a committee of 4 be selected from a pool of 4 people?
13. The sum of $\frac{1}{2}$ a number and $\frac{1}{3}$ the sum of the number and 7 equals 2 . Find the number.
14. $\frac{\left(2 x^{2}-98\right)\left(x^{3}+4 x^{2}-21 x\right)}{2(x+7)^{2}\left(x^{3}-10 x^{2}+21 x\right)}=$
15. $\left(\frac{1}{2}\right)^{-3}-\left(\frac{3!}{42}\right)^{-1}=$
16. $\sum_{x=1}^{10} 3 x-16.4=$
17. Solve for $\mathrm{x}: 3^{5 x-1}=81$
18. How much of a 90% salt solution should be added to 25 lbs of a 12% salt solution to produce a 15% salt solution?
19. $\frac{x}{x+y}-\frac{2 y^{2}}{x^{2}-y^{2}}+\frac{y}{x-y}=$
20. $-\left(-\frac{\sqrt{2}}{2}+\frac{i \sqrt{2}}{2}\right)^{4}=$
21. $\left|\begin{array}{ll}5 & -9 \\ 4 & -7\end{array}\right|=$
22. $\log _{\frac{1}{2}} .5=$
23. $i^{92}=$
24. A drawer contains 10 black socks. If you choose 2 socks at random, what is the probability that they are both black?
25. Find a_{18} in the arithmetic sequence given $\mathrm{a}_{1}=50$, and $\mathrm{d}=3$.
26. $\left.\begin{array}{l}x+y+2 z=1 \\ 2 x+y-z=5 \\ x+2 y+z=4\end{array}\right\} \quad x=$
27. $\frac{\log _{5} 125}{\log _{2} 8}=$
28. $\left(y^{2}-3 y+9\right)\left(y^{2}+3 y+9\right)-\left(y^{4}+9 y^{2}+80\right)=$
29. Find the y-intercept of the following line: $3 x+4 y=4$
30. $\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)=$
31. Solve for $\mathrm{x}: \log \mathrm{x}=0$
32. $x^{2}-y^{2}=4$. For this hyperbola, the slopes of the asymptotes are -1 and \qquad .
33. $-[4(5-3)-2(4-7)] \div[2(-1-6)]=$
34. What is the geometric mean between $\frac{3}{5}$ and $\frac{5}{3}$.
35. $(5-3 y)-(7+9 y)-(-3-12 y)=$
36. $\frac{x^{3}-8}{x^{3}-4 x} \cdot \frac{x^{3}+2 x^{2}}{x^{3}+2 x^{2}+4 x}=$
37. $\frac{-4}{4 i^{6}}=$
38. If you flip a coin 5 times, there are 32 possible outcomes. How many of these outcomes contain no heads?
39. $\frac{64^{\frac{-5}{6}}}{2^{-5}}=$
40. $\frac{3 x-2}{2 x-3} \cdot \frac{3-2 x}{2-3 x}=$
41. Find the positive solution for $\mathrm{x}: \sqrt{2 x+7}-\sqrt{x+3}=1$
42. $\left(x^{2}\right)^{2}\left(x^{-2}\right)^{2}=$
43. $i^{13}+i^{16}+i^{19}=$
44. $(\sqrt[3]{2}-1)(\sqrt{4}+\sqrt[3]{2}+1)=$
45. ${ }_{1} P_{1}=$
46. A box contains 4 red marbles, 3 blue marbles, and 2 white marbles. How many random selections of three marbles contain all three blue?
47. $\frac{\left(x^{3} y^{2}-3 x^{2} y\right)\left(x^{2} y^{2}-3 x y\right)^{-1}}{x}=$
48. Solve for $\mathrm{x}: 3+3 x^{2}=6 x$
49. What is the positive x-intercept of this ellipse? $16 x^{2}+y^{2}=16$
50. $|8-5|-|5-7|=$
51. $9(1-4)^{-2}=$
52. For this parabola, $x=4 y^{2}-8 y+7$, the equation of the axis of symmetry is $\mathrm{y}=$ \qquad -
53. $[2+2(-8)] \div(-14+7)-1=$
54. $-2 i(.5 i)=$
55. Give the coordinates of the midpoint between $(-5,3)$ and $(7,-1)$.
56. Find a_{1} in a geometric series given $\mathrm{S}_{7}=127$, and $\mathrm{r}=2$.
57. $\log _{3} 3=$
58. $\left(\frac{1}{27}\right)^{\frac{-2}{3}}(3)^{-2}=$
59. $-\ln \left(3 e^{\frac{x-1}{1-x}}-2 e^{\frac{y-2}{2-y}}\right)=$
60. What is the rightmost root of the following equation? $\left|x^{3}+5 x^{2}+3 x+2\right|=11$

Bonus.
61. $-\mathrm{e}^{\pi \imath}=$

