Assessing Modeling Tasks and Student Engagement with the Modeling Process From Abel, Baird, Hirst, & Salinas (2016). For more information please contact Dr. Todd Abel, Appalachian State University, Boone, NC [abelta@appstate.edu]. ## **Formulate** | | Level A | Level B | Level C | |--------------|---|---|---| | Task | Presents well-defined goals and questions Provides Variables, constants, and assumptions Provides or directs the process of mathematization | Suggests questions and goals if not given OR provides questions and goals but requires explanation Suggests mathematization if not given or requires explanation if given Requires students to identify assumptions | Provides situation but
allows for clarification
of goals and questions Requires students to
identify assumptions,
variables, and resulting
mathematization Allows for a variety of
formulations based on
context | | Student Work | Explains rationale for assumptions and questions Demonstrates understanding of why the particular mathematization was appropriate | Demonstrates
understanding of
mathematizaation,
either by adapting or
explaining existing ones Identifies all
assumptions implicit in
the mathematization | Creates a precise and well-formed modeling question Explains the assumptions made and identifies variables Creates a correct mathematization within the context | ## Compute | | 55p. 4.55 | | | |------------------|--|---|---| | | Level A | Level B | Level C | | Task | Directs computations that are procedural in nature Prescribes and directs technology use | Limits but does not prescribe computation methods Provides multiple but limited solution paths Guides but does not prescribe students use of technology | Allows for multiple computation methods and technologies Applies a broad range of math Provides insight into mathematics concepts through computation methods | |
Student Work | • Evaluates or computes correctly following directed steps | Chooses appropriate computation method and provides support for choice Implements chosen computation method accurately | Selects and explains computation method based upon comparison possible solution techniques Produces procedurally and conceptually accurate computation | #### Validate | | Level A | Level B | Level C | | | |--------------|--|--|---|--|--| | Task | Prompts minimally or
not at all for
reevaluating the
components of the
model (question,
assumptions, variables,
math models,
computation, solution) | •Prompts students to
consider other possible
approaches and review
the usefulness of their
model | Motivates students to
consider whether the
situation can be
approached in other
ways Prompts analysis of
solutions for sensitivity,
efficiency, and sources
of error | | | | Student Work | Demonstrates
consideration of
whether the solution
answers the original
question | Shows evidence of reflection on correctness and challenges computations and answers Demonstrates evidence of what is wrong, what is correct, and if other solutions are nossible | Includes assessment of assumptions and questions Analyzes sources of error, precision, accuracy, sensitivity, efficiency, and generalizability | | | #### Interpret | | Level A | Level B | Level C | |--------------|--|--|--| | Task | • Requires
straightforward or
cursory interpretation
of mathematical
answers | Prompts students to interpret answers in context and reflect on reasonableness of answers Motivates students to assess computation | Requires interpretation of answers in context and reflection on implications within the context Prompts consideration of other solution methods | | Student Work | Provides solution with
correct units or within
the correct context | Provides the solution
with correct units in
context and shows
capacity to explain Assesses the
reasonableness of the
answer | Provides the solution
in context and
demonstrates
consideration of
whether question was
answered, whether the
answer makes sense,
and whether
computations need to
be revisited |